5G channel sounding

The need for higher data rates and therefore higher bandwidth for 5G makes it necessary to adopt significantly higher carrier frequencies compared with today’s cellular network implementations below 6 GHz.

Various research projects initially discussed a frequency spectrum in the range of 6 GHz to 100 GHz. The first 5G deployments above 6 GHz will use the 26 GHz to 28 GHz and 39 GHz spectrum range. The entire industry needs to learn how signals in emerging high-frequency bands with very wide bandwidths propagate through the radio channel. Channel sounding is the process of characterizing a radio channel by decomposing the radio propagation path into its individual multipath components. This information is essential for developing robust modulation schemes to transmit data over the 5G radio channel.

Oxygen and water absorption in the atmosphere significantly increase signal attenuation in the mmWave range
Oxygen and water absorption increase signal attenuation

Your 5G test challenges

Initially, mobile network operators, research institutes, universities and other industry players conducted extensive channel measurement campaigns to define 5G channel models for standardization bodies such as 3GPP. Though some channel models have already been defined, 5G channel sounding campaigns are still ongoing since channel characteristics at higher frequencies clearly differentiate from the characteristics at traditional frequencies below 6 GHz:

  • Since path loss is significantly higher, highly directional beamforming will be required in the mmWave domain.
  • Oxygen and water absorption (e.g. rain or humidity loss) has to be taken into account for specific bands.
  • The coherence time of a radio channel is much shorter.
  • The attenuation of most obstacles is stronger (e.g. even high foliage loss is present).
  • Specular reflections are more common in mmWave.

Benefits of Rohde & Schwarz 5G test solutions

  • Pulse compression method provides an additional processing gain since the applied 5G channel sounding signals exhibit very good autocorrelation properties.
  • Bandwidth capability of the applied transmitter and receiver is critical – the R&S®SMW200A vector signal generator and the R&S®FSW signal and spectrum analyzer both offer up to 2 GHz internal bandwidth, allowing an excellent echo time resolution down to 0.5 ns.
  • Direct measurement of the channel impulse response (CIR) over the full bandwidth in the time domain is much faster and more flexible compared to a network analyzer based test setup.
  • Ideal for 5G outdoor channel measurements over longer ranges: the very high reference frequency stability of the R&S®SMW200A and the R&S®FSW enables relative power delay profile measurements with no need for synchronization.
  • Unique dynamic range thanks to the R&S®FSW analyzer’s high receiver sensitivity and built-in low-noise power amplifier. Special channel sounding signals enhance the achievable processing gain to further increase the dynamic range.
5G channel sounding measurement based on the pulse compression method

5G channel sounding measurement based on the pulse compression method

The R&S®SMW200A vector signal generator transmits a band-limited channel sounding signal at the frequency of interest. The radio channel alters this signal due to the surrounding environment, which can include obstacles, reflections, scattering, oxygen absorption and movement. The R&S®FSW signal and spectrum analyzer receives and processes the signal from the channel and forwards the resulting I/Q data to the data analysis software. The software correlates the received I/Q data with the originally transmitted signal in order to estimate the channel impulse response that describes the radio channel.

Related products

R&S®SMW200A vector signal generator

R&S®SMW200A vector signal generator

Generation of a frequency band-limited signal based on a special pseudonoise (PN)

More information

R&S®FSW signal and spectrum analyzer

R&S®FSW signal and spectrum analyzer

Unique dynamic range thanks to high receiver sensitivity and built-in low-noise power amplifier

More information

Related resources

High-resolution directional channel measurements at 67 GHz

Paper: High-resolution directional channel measurements at 67 GHz and advanced analysis of interactions using geometric information

More information

Analysis of Delay and AOD Spread at 67 GHz

Paper: Analysis of delay and AOD spread at 67 GHz for an urban micro street canyon scenario

More information

Instantaneous Direction of Arrival Measurements

Paper: Instantaneous direction of arrival measurements in mobile radio channels using virtual circular array antennas

More information

Characterization of mm-wave channel sounders

Paper: Characterization of mm-wave channel sounders up to W-Band and validation of measurement results

More information

Related topics

Demystifying the 5G NR physical layer

5G NR testing

More information

5G signal generation and analysis

5G signal generation and analysis

More information

5G massive MIMO
5G OTA/massive MIMO testing

More information

Request information

Do you have questions or need additional information? Simply fill out this form and we will get right back to you.

I want to receive information from Rohde & Schwarz via

Marketing permission

What does this mean in detail?

I agree that Rohde & Schwarz GmbH & Co. KG and the Rohde & Schwarz entity or subsidiary company mentioned in the imprint of this website, may contact me via the chosen channel (email or postal mail) for marketing and advertising purposes (e.g. information on special offers and discount promotions) related to, but not limited to, products and solutions in the fields of test and measurement, secure communications, monitoring and network testing, broadcast and media, and cybersecurity.

Your rights

This declaration of consent may be withdrawn at any time by sending an email with the subject "Unsubscribe" to news@rohde-schwarz.com. Additionally, a link to unsubscribe from future email advertisements is contained in each email sent. Further details on the use of personal data and the withdrawal procedure are set out in the Statement of Privacy.

Your request has been sent successfully. We will contact you shortly.
An error is occurred, please try it again later.