Search Application Notes & Cards
Learn how to configure Rohde & Schwarz products to fit your application. Search our database by product, technology, or application to find relevant technical documents.
Search Application Notes & Cards
Learn how to configure Rohde & Schwarz products to fit your application. Search our database by product, technology, or application to find relevant technical documents.
1082 Results
Batteries are dynamic energy sources that diverge from ideal voltage sources. The R&S®NGM-K106 battery simulation option recreates battery models on the R&S®NGM200/NGU201 does far more than standard models.
02-May-2023
The battery cycle tool has several charts that display collected data and can be used to characterize battery samples and create battery models.
02-May-2023
The Rohde & Schwarz power consumption analysis tool helps evaluate power consumption data collected with Rohde & Schwarz power supplies.
01-May-2023
Rohde & Schwarz has a tool that can configure all instruments and channels from one interface to maintain an overview of the states and measurement values for all channels.
28-Apr-2023
DC power supplies from Rohde & Schwarz can be connected and configured for synchronized on/off switching of all channels across multiple power supplies in intricate and complex systems.
28-Apr-2023
Ethernet based remote services for Rohde & Schwarz DC power supplies and R&S®LCX LCR meters
27-Apr-2023
EMI compliance is becoming a major concern for advanced power electronics due to increasing switching speeds. Correlated time-frequency measurements help optimize gate driving and minimize electromagnetic emissions early on during development.
27-Apr-2023
The R&S®ZNA vector network analyzer with integrated LO output and direct IF input options is a simple, cost-effective solution for 2-port and 4-port measurements using Rohde & Schwarz mmWave converters.
27-Apr-2023
Harmonic load pull measurements explore potential device efficiency to find the best design topology.
17-Apr-2023
Calibration and Verification Solution
The UWB (Ultra-Wideband) technology is a short range wide-band radio technology specified for device to device communication operating in unlicensed spectrum. It is an RF positioning technology that enables accurate and secure peer-to-peer ranging between mobile devices with robust resistance to interference while consuming very low energy and coexisting well with other radio communication systems. UWB is used for a variety of different applications, such as asset tracking, secure payment, personal tracker, real time location services and keyless access and start of a vehicle etc. According to ABI Research forecasts, there will be well over 1 billion UWB annual device shipments by 2026. Almost every smart phone shipped in 2026 will support UWB services.Talking about testing aspect of a UWB device, in general two test methodologies can be adopted as other wireless products, either the traditional testing mode (so-called conducted test mode) with wired RF connection between the test measurement equipment and device under test (DUT) or over the air (OTA) test mode in an OTA anechoic chamber. Sometimes, it is not always possible or necessary to perform the tests under conducted mode due to the limiting factors, e.g. cost, space, complexity and direct access to the RF connectors of the product. In this case, OTA testing is then becoming a non-evitable approach. Moreover, OTA testing reflects the usage of DUT in a real condition.In this application note, R&S® OTA test solution covering transmitter (Tx), receiver (Rx) and Time of Flight (ToF) testing in Wireless Automated Testing (WMT) environment is described. The measurement results throughout the whole document are based on NXP Trimension™ NCJ29D5 UWB automotive IC.
12-Apr-2023 | AN-No. 1SL394
High throughput is the key production metric for efficient operation. Improving test speed helps reduce the cost per device. The R&S®PVT360A performance vector tester is optimized for high speed production tests.
12-Apr-2023
Getting started with IQ Streaming Application
The intention of this Application Note is to provide an overview of all necessary tasks for getting along with successful IQ Streaming.The necessary technical requirements are described as well as the streaming parameters of the IQ data stream.The general operation and basic setup of the MSR4 is described in the user manual and is not part of this document.
28-Mar-2023 | AN-No. 1179.7104.02
In addition to the main function, power electronic circuits very often have to provide other essential functions such as interfacing with submodules to fulfill system design requirements. Power designs therefore include bus communications in combination with a microcontroller. This can easily lead to more complex designs that may have a negative impact on the conducted emission measurements. Sometimes these auxiliary functions generate emissions infrequently, making it challenging to locate and isolate the root cause. An instrument with a very fast FFT analysis capability is essential to find infrequent events efficiently.
03-Mar-2023
The R&S®CMX500 radio communication tester is ideal for analyzing VoNR and VoLTE voice quality and performance in mobile devices.
21-Feb-2023
This paper describes the characterization of aluminum electrolytic capacitors specifically used in AC-DC power converter applications. It will be discussed why this capacitor technology is critical regarding lifetime and why it cannot be substituted simply by any another capacitor technology. Different aging effects of the capacitor will be discussed. Usage of the capacitor in different AC-DC converter topologies will be presented. Simulation circuits will be used to analyze the capacitor in more detail before suitable measurements will be performed to demonstrate a real example of a switching-mode power supply (SMPS).After the introduction into the aluminum electrolytic capacitor basics and theory, this paper will also present all important and possible measurements of capacitor parameters, like capacitance, equivalent series resistance (ESR) and ripple current. This includes in-circuit measurement which can be performed with an oscilloscope. An LCR-bridge is used to obtain high accuracy measurements in addition. A comparison between the two measurement methods will be presented. Furthermore, the required measurement hardware for the in-circuit measurements and the bridge measurement will be discussed and presented.Lastly, two different lifetime calculation methods are presented and a real example is used to compare the advantages and disadvantages of the different methods.Thanks to Mr. Frank Puhane from Würth eiSos GmbH & Co. KG who provided me with all aluminum electrolytic capacitor samples including the prepared capacitor with build-in temperature sensors to perform all measurements. Furthermore, his great expertise was very beneficial and helpful to create this premium application note.
07-Feb-2023 | AN-No. 1SL388
Radar technology is essential for state-of-the art and future vehicles on the path to full autonomous driving. Radar sensors deliver critical information about the surrounding traffic environment or monitor the interior of the vehicle. As safety-relevant parts, radar sensors must adhere to specifications and regulations.
12-Dec-2022
An offline AC/DC switching converter has no separate bias power supply that provides power to the control integrated circuit itself. Here, an auxiliary primary winding and discrete components are added to supply power to the control circuit. Verifying this circuitry is essential and requires accurate and detailed signal level and timing measurements. The startup sequence takes a long time, which needs to be taken into consideration in the measurement and requires an instrument with sufficient memory.
23-Nov-2022
This application note is about creating your own battery model for the R&S®NGM200 and R&S®NGU201, beyond the standard models provided within the battery simulation option NGM-K106 and NGU-K106. To get to a battery model, a few steps are required. To determine the parameters for the battery model, it is necessary to discharge a battery using a selected method, to record the data and to calculate the model on this basis. With this software, a connection can be established to the instrument, batteries can be measured using various measurement methods, and a model can then be created from these measurements. These models, which are determined from the measurements, can then be simulated with the power supply, thus creating a digital twin of the battery. Using these, test scenarios can be carried out in a safe and reproducible environment.
21-Nov-2022 | AN-No. 1GP136
This document is divided in two parts and starts with an introduction in AC-DC conversion principles in general. It will present the most common circuits used for different power levels. The switching mode power supply (SMPS) converter will be the main focus as they are used everywhere in the electronics. Especially the flyback converter design in different flavors are highlighted. Nevertheless, all measurements are also applicable for other SMPS converter designs operating at higher power levels.In the second part of this document, most relevant testing methods and procedures of an AC-DC converter are highlighted. For each testing section, a fundamental part will be upfront discussed and it is followed by a presentation of a suitable measurement method. In this second part, the device under test (DUT) is considered as black box device and thus the structure is similar. Therefore, the testing parts consists of methods related to input tests, output tests and a combination of both like efficiency. Of course, some test performed at the output of the converter are also relevant for DC-DC converter, e.g. the validation of the output ripple.
14-Nov-2022 | AN-No. 1SL387
A step by step HOW TO guide to perform manual and automated wireless coexistence testing
At the end of the year 2020, there were over 20 Billion internet of things (IoT) products in the world operating using the licensed and unlicensed frequency bands. This growth trend is projected to keep steady over the coming years as more and more people adopt to a smarter and more connected lifestyle. This will result in a much busier and challenging RF environment than the one we have today. In order to understand the complexity of the RF spectrum, a white paper was published in 2021 from Rohde & Schwarz, which featured RF spectrum activity at multiple locations observed at different times of the day. The locations were selected based on population densities and the amount of known RF transmitters & their frequencies at those locations. It was also concluded that the ISM bands on average have higher channel utilization since most IoT devices take advantage of the unlicensed spectrum. The paper recommended, that while performing wireless coexistence testing, the test conditions should reflect the operational RF environment that the device is intended to operate in. Otherwise, the characterization of RF performance would only reflect ideal case which doesn’t exist in real world operation. Since it is not always possible to test all devices in the real world, relevant test methodologies need to be setup to replicate the real world as much as possible.This will help us get a better understanding of how the receiver of the RF device will behave under different RF conditions. It is also recommended to perform measurements in order to understand the behavior of the device in the future when the spectrum will get even more challenging. Therefore, a through characterization of the capability of the RF receiver to handle in-band and out-of-band interference signals in also of interest.In terms of regulatory compliance requirements for ensuring wireless coexistence performance, the ANSI C63.27 is currently the only published test standard that provides guidance on how to perform coexistence testing on devices. The test complexity is based up on risk imposed on the user’s health in the event of a failure caused by an or a plurality of interference signal. The standard also gives device manufacturers guidance regarding test setups, measurement environments, interference signal types and strategy, performance quality measurement parameters for physical layer using key performance indicator (KPI) and application layer parameters for end-to-end functional wireless performance (FWP).In this application note, the guidance provided by the ANSI C63.27-2021 version regarding test setup, measurement parameter and interference signal have been followed. It will give the reader a clear idea on how to configure standardized test instruments from R&S in order to generate the wanted signal as well as unintended interference signals and conduct measurement to monitor device performance in terms of PER, ping latency and data throughput.This application note provides step-by-step instruction on how to perform measurements using conducted and radiated methodology. Both manual and automated instrument configuration approach is explained in this document.The automation scripts are written using python scripting language and are available for download with this application note, free of charge. Official required to run the scripts are available on the PYPI database.
10-Nov-2022 | AN-No. 1SL392
High-speed serial interfaces often transmit data with differential signaling and differential probes that can be used to access signal traces. In addition to differential inputs, these probes have a ground connection.
02-Nov-2022
For several years, vehicle manufacturers and government agencies have sought ways to increase road safety, manage traffic efficiently and, in the future, make driving more comfortable, convenient and safe. Vehicle-to-everything (V2X) is a new generation of information and communication technology that connects vehicles to everything and can support these objectives. V2X is designed to offer low-latency vehicle-to-vehicle (V2V), vehicle-to-roadside infrastructure (V2I) and vehicle-to-pedestrian (V2P) communications to add a new dimension to future driver assistance systems.Cellular V2X (C-V2X) is defined as the communications standard by 3GPP in Release 14 and uses LTE technology as the physical interface for communications.The LTE C-V2X Scanner provides customers an opportunity to verify, test, and optimize ITS traffic systems that are being deployed or are already established. The scanner accomplishes this by passively listening to PC (5.9GHz) messages that are being broadcast from RSU (roadside units), vehicles or any other C-V2X enabled device. Traditional scanner measurements regarding RF signal power and quality such as RSRP, RS-CINR and RSSI, are provided for each physical channel (PSCCH and PSSCH) as well as decoded ITS message content for all three regions (North America, EU, China).
21-Oct-2022 | AN-No. 8NT07
With IT and OT environments converging, security concerns relating to devices and applications deployed in networked test labs, especially in T&M environments, are growing. The demands on IT security here are manifold and include, for example, remote access to in-house infrastructures, equipment rented from external providers, and the continuous deployment of devices across different time zones.
18-Oct-2022
1SL391 audio, breakthrough, ETSI EN 301 489 Audio Breakthrough Assembly and Test Setup 1SL391 audio, breakthrough, ETSI EN 301 489 Related products
11-Oct-2022 | AN-No. 1SL391
The need for an objective evaluation of mobile network quality and performance drives two fundamentally different approaches, crowdsourcing and mobile network testing. The crowdsourcing market is highly saturated. More than 20 companies have a significant focus on crowdsourcing mobile network measurements. To get measurement results, they use different concepts that serve different purposes. This application card describes the structure of the crowdsourcing space and analyzes the pros and cons of both approaches.
06-Oct-2022
In the satellite sector, components, subsystems and entire satellites must be qualified in a thermal vacuum chamber before they can be used in space. This qualification proves that equipment can not only survive but also function in the harsh conditions encountered during launch and in space.
05-Oct-2022
Ensures compliance of IEEE 802.3bj/by/cd/ck cables with fast automation and easy testing.
04-Oct-2022
For measurements of non-connectorized devices, test fixtures, probes or other structures are used to adapt from the coaxial interface of the test setup to the device under test (DUT). For accurate measurements of the DUT, these lead-ins and lead-outs need to be characterized, so that their effects can be mathematically removed, i.e. de-embedded from the measurement results.This application note provides practical hints to accurately characterize and de-embed these lead-in and lead-out structures with R&S Vector Network Analyzers ZNA, ZNB, ZNBT and ZND. As de-embedding is also essential in other test equipment like oscilloscopes, etc., this guide also describes, how lead-ins and lead-outs can be accurately characterized with a VNA and then exported as an S-Parameter file to be used by other test instruments.
19-Sep-2022 | AN-No. 1SL367
This document provides some technical background and guidance on how to optimize the measurement of one of the key performance parameters of WLAN transmitters - the Error Vector Magnitude (EVM).
IEEE 802.11be Extremely High Throughput (EHT), also known as Wi-Fi 7, is the latest amendment of the IEEE 802.11 standard and is still under development. This amendment focuses mainly on improved throughput. To do so, the most notable changes currently implemented are:► New modulation scheme: 4096-QAM (4K-QAM)► Larger bandwidth: 320 MHz► Support for 16x16 MU-MIMO► Enhanced resource allocation in OFDMAThis places special demands on the measurement equipment.
06-Sep-2022 | AN-No. 1EF114
Broadband amplifiers are necessary for generating the field strengths required for most EMC radiated immunity tests. This Educational Note provides a brief overview of the role of amplifiers in EMC testing as well as a discussion of the parameters and characteristics which have the greatest influence on amplifier performance.Register now to download the Educational Note.
01-Aug-2022